Misconception Monday: Hypotheses, Theories, and Laws, Oh My!

As I have mentioned in previous posts, I used to work for a textbook company. When I first started, there was a wonderful woman who was the departmental expert on anything related to the nature and process of science. She was the go-to person for all our introductory “this is science, kids!” chapters. When she retired, everyone panicked because we knew that she left behind a tremendous void that, frankly, no one was interested in touching since introductory chapters tend to be both pretty dry and full of pitfalls. Soon enough, however, I was saddled with an introductory chapter for a new environmental science book.

Now as it happens, this turned out to be a wonderful thing for me, because I was able to convince the powers that be to let me collaborate with the people from Understanding Science. The final product was fabulous. We were able to present the true iterative and not-at-all linear nature of science and we tackled quite a few misconceptions in just 24 pages. One of the misconceptions we struggled with the most was this one:

Misconception: With enough evidence, a hypothesis can become a theory, which can become a law.

Correction: Hypotheses and theories are explanations for phenomena that differ in breadth, not necessarily in degree of evidentiary support; Laws are generally descriptions of physical phenomena. 

Let’s first consider hypotheses and theories. A hypothesis is an explanation for a relatively narrow set of phenomena and a theory is an explanation for a relatively wide set of phenomena. Sound arbitrary? Well, to be honest, it is a bit. There is no set “rule” that says, well, this explanation covers 999 phenomena, so it’s a hypothesis, but this explanation covers 1000 phenomena, so it qualifies as a theory!

Further complicating things is that existing theories can generate new hypotheses. Punctuated equilibrium, for example, is a hypothesis that predicts periods of rapid evolutionary change followed by periods of relative stasis. When proposed by Gould and Eldredge in 1972, it was a new hypothesis, but the hypothesis was spawned from existing evolutionary theory. But wait! Isn’t the theory of natural selection part of evolutionary theory? Can a theory be a subset of a theory? Sure. Like I said, it’s all a bit arbitrary. Evolutionary theory is a big, lovely, over-arching golf umbrella of a theory.

So existing theories can generate new hypotheses, but existing hypotheses can also be rolled up into a new theory. For example, the classic cell theory unites the hypotheses that all living things are composed of cells, that new cells come from existing cells, and that cells are the fundamental unit of structure and function for all of life. Modern cell theory now includes additional hypotheses, such as all cells are biochemically similar, contain heritable genetic information, and are the sites of energy flow.

Now, what about laws? Have you ever noticed that most of the “laws” in science tend to be in the physical sciences and astronomy? There aren’t a lot of “laws” in biology—in fact, I can’t think of any aside from Mendel’s Laws. Why is that? Is it because biology is a “soft science” while physics and astronomy are “hard sciences”? Not at all. It’s because people in those fields really liked the term “law.” No, really. That’s pretty much it. Some books will try and say that laws are descriptions while theories and hypotheses are explanations. Some might try and say that laws extend to situations that can never be tested, or that something is a law when there is math involved. But none of these distinctions really manage to sum up all the different sorts of things we call laws in the sciences.

According to Wikipedia, the following are among the laws in science: Bernoulli’s principle, general relativity, Carnot’s theorem, Maxwell’s equations, and Brewster’s angle. Depending on the book, the Big Bang is a theory or a hypothesis. It’s all a bit confusing and arbitrary. But you know what? It really doesn’t matter. Everything I’ve listed, from punctuated equilibrium to Bernoulli to the Big Bang are all important concepts in science and our understanding of them doesn’t hinge on what label they are given. But three things are important to emphasize in the classroom:

Stephanie Keep
Short Bio

Stephanie Keep is the former Editor of Reports of the National Center for Science Education

X
We can't afford to lose any time when it comes to the future of science education.

National Center for Science Education (NCSE) is a 501(c)(3) tax-exempt organization, EIN 11-2656357. NCSE is supported by individuals, foundations, and scientific societies. Review our annual audited financial statements and IRS 990 forms at GuideStar.

© Copyright 2019 National Center for Science Education. Privacy Policy and Disclaimer | Disclosures Required by State Law